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Frequency responses and their sensitivities have been broadly applied to the
areas of "nite element model updating, structural damage detection, structural
dynamic optimization and so on. A modal acceleration method for the frequency
responses and a double-modal acceleration method for their sensitivities of
undamped systems are derived in this paper. The two methods are based on the
hybrid expansion, power series expansion and modal superposition, of the dynamic
#exible matrix. Three steps are required to calculate the sensitivities using the
proposed method. Firstly, frequency responses of a system excited by external
forces are calculated by using modal acceleration. A pseudo-force vector is then
computed from the product of the sensitivity matrix and the frequency response
vector. Finally, a second-modal acceleration is applied to obtain the general
frequency responses, that is, the sensitivities, under the pseudo-forces. Two modal
truncation schemes, middle}high}modal and low}high}modal truncation
schemes, are presented according to the values of the excited frequencies. The
modal truncated errors of the frequency responses and their sensitivities will be
reduced quickly when the two-modal acceleration methods are adopted. Although
only the frequency responses and their sensitivities are discussed in this paper, the
proposed methods are also valid for the frequency response functions, responses in
time domain and their sensitivities. The results of a two-dimensional frame show
that the proposed modal acceleration methods are e$cient, especially for the
sensitivities.
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1. INTRODUCTION

Sensitivity analysis with respect to design parameters was "rst applied to optimal
control and automated structural optimization in which gradient methods were
used to "nd the search directions for optimum solution. More recently, the
sensitivities of dynamic properties have been applied to "nite element model
updating, structural damage detection, dynamic optimization and so on. The
sensitivities of eigenvalues and their corresponding eigenvectors of a structure
have been discussed in detail during the past 30 years. The results of such work
are fruitful and almost conclusive. However, there seems to be far less work
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being done directly on the frequency responses, which have even more practical
applications.

Generally, there are two kinds of methods, i.e., direct method and modal
superposition method, for calculating frequency responses. The direct approach is
based on the direct frequency solution and results in an exact calculation of
frequency responses. In this method, the decomposition of the system dynamic
matrix, forward and back substitution processes are involved for every
excited frequency. Hence, it is computationally very expensive when the number
of the degrees of freedom and excited frequencies is large. Another disadvantage is
its inability in handling modal damping, which is a vital concern in some
applications.

The modal superposition method can be classi"ed into several approaches:
typical modal superposition [1], modi"ed modal superposition [1] and modal
acceleration [2, 3]. This kind of method can make up for the two drawbacks of the
direct method. However, the eigenvalues and their corresponding eigenvectors of
a system should be available. When modal truncation is adopted, the truncated
errors of the frequency responses obtained from the modal acceleration approaches
are very small compared with the typical and modi"ed modal superposition
approaches.

Three kinds of methods, direct approach, modal superposition approach and
double-modal superposition approach, are usually used to calculate the
sensitivities of the frequency responses. Similarly, the direct approach [4, 5] has two
main shortcomings stated above. In the modal superposition method [6, 7], the
sensitivities are obtained by taking the derivatives of frequency responses expressed
in the modal superposition form. It is unnecessary to decompose the system
dynamic matrix for every excited frequency in this method. However, a set of
eigenpairs and their sensitivities are required. In addition, when there are repeated
modes existing among the interested frequency range, the method may fail to
obtain the correct results [7].

In 1993, Ting [8] proposed an improved method for calculating the sensitivities
of frequency responses. It combines the modal acceleration method with the Ritz
minimization technique to improve the modal approximation accuracy.

Based on the power-series expansion and modal superposition of the dynamic
#exible matrix, a modal acceleration method and a double-modal acceleration
method for frequency responses and their sensitivities of undamped system are
derived respectively. The modal truncated errors of the frequency responses and
their sensitivities will be reduced quickly when the two-modal acceleration methods
are adopted. According to the values of the excited frequencies, two-modal
truncation schemes, middle}high}modal and low}high}modal truncation
schemes, are presented. When the frequencies of excited forces lie in the lower
frequency range of a system, the middle}high}modal truncation scheme is applied.
Similarly, the low}high}modal truncation scheme is used for the frequency
responses and their sensitivities in the middle frequency range. The proposed
methods are also valid for frequency response functions, responses in time domain
and their sensitivities. A two-dimensional frame is applied to show the e$ciency of
the proposed methods.
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2. THEORETICAL BACKGROUND

The dynamic equations of the n-degree-of-freedom undamped system can be
written in a matrix form as

M(p)XG (p , t)#K(p)X(p, t)"F(t) , (1)

where M (p) and K(p)3Rn]n are real symmetric mass and sti!ness matrices
respectively. They are the functions of design parameter vector p. For simplicity,
this indication will be omitted in further discussion. X(p, t) and F(t)3Rn]1 are the
displacement and excited force vectors respectively. A dot denotes one
di!erentiation with respect to time t.

Suppose that all the components of vectors X (t) and F (t) are Fourier
transformable and their transformations are X(u) and F(u) respectively. Assuming

XQ (t)"X(t)"0 (2)

for t"0, the Fourier transformation of equation (1) is

(K!u2M)X(u)"F(u) , (3)

where u is circular frequency of excited forces. Hence, the frequency responses are

X(u)"(K!u2M )~1F(u) . (4)

The sensitivities of the frequency responses can be obtained by taking the "rst
partial derivative of equation (3) with respect to a selected design variable p

j
( j"1, 2,2,m) , that is

(K!u2M )
LX(u)
Lp

j

"R(u) , (5)

where pseudo-force vector R(u) is de"ned as

R(u)"S (u)X(u) , S (u)"!A
LK
Lp

j

!u2
LM
Lp

j
B . (6)

Hence, the sensitivities of the frequency responses are

LX(u)
Lp

j

"(K!u2M)~1 R(u) . (7)

Assuming that the eigenvalue and eigenvector matrices of the system are K and
U3Rn]n, and

K"diag(j
1
, j

2
,2, j

n
), (j

1
)j

2
)2)j

n
), U"[/

1
/
22

/
n
], (8)
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where j
i
and /

i
are the ith eigenvalue and eigenvector. K and U satisfy the following

eigen-equation and orthogonalities:

KU"MUK, (9)

UTKU"K, (10)

UTMU"I, (11)

where superscript T denotes matrix transpose. I is an identity matrix of n]n. From
equations (9)}(11) one obtains

K~1"UK~1UT, (12)

(K!u2M)~1"U (K!u2I)~1UT. (13)

2.1. MODAL SUPERPOSITION METHOD FOR FREQUENCY RESPONSES

Substituting equation (13) into equation (4), one has

X(u)"U(K!u2I)~1UTF (u). (14)

The frequency responses, which are expressed in modal parameters in equation (14),
can be expanded in modal space as

X(u)"
n
+
r/1

/T
r
F(u)

j
r
!u2

/
r
. (15)

Equations (14) and (15) are the basic equations of frequency responses.
The excited frequencies can be classi"ed into three categories compared with the

natural frequencies of the system. (a) The excited frequencies are all very low and
the largest one is still lower than the lowest natural frequency of the system. For this
case, the calculation of the frequency responses and their sensitivities is very simple
and will not be discussed in the following. (b) The excited frequencies are low and
lie in the lower frequency range of the system. (c) The excited frequencies are a little
high and lie in the middle frequency range. According to the division, the
modal truncation can be divided into middle}high}modal truncation and
low}high}modal truncation.

In the middle}high}modal truncation approach, both the middle and the higher
modes of the system are truncated. Hence, only the modes in the lower frequency
range are used to calculate the frequency responses and their sensitivities. Suppose
that the lower ¸ modes are selected when modal truncation is applied; the
frequency responses de"ned in equation (15) become

Xl
1
(u)"

L
+
r/1

/T
r
F(u)

j
r
!u2

/
r
. (16)
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When the excited frequencies lie in the middle frequency range of the system, the
number of the kept modes will be very large if equation (16) is still used to calculate
the frequency responses. This makes it di$cult to solve the eigenproblem (9).
Hence, the low}high}modal truncation approach is applied. If the ¸

1
th through

¸
2
th modes are selected as the kept modes, the frequency responses can be

expressed as

Xm
1
(u)"

L2
+

r/L1

/T
r
F(u)

j
r
!u2

/
r
. (17)

The modal truncated error of the frequency responses resulting from equations (16)
and (17) are

El
1
(u)"

n
+

r/L`1

/T
r
F(u)

j
r
!u2

/
r
, (18)

Em
1

(u)"
L1~1
+
r/1

/T
r
F (u)

j
r
!u2

/
r
#

n
+

r/L2`1

/T
r
F(u)

j
r
!u2

/
r
. (19)

The superscript l and m in equations (16}19) denote the frequency responses in the
lower and higher frequency range respectively.

2.2. DOUBLE-MODAL SUPERPOSITION METHOD FOR THE SENSITIVITIES

Introducing equation (13) into equation (7) yields

LX(u)
Lp

j

"U (K!u2I )~1UTR (u) . (20)

For the double-modal superposition method, three steps are required to calculate
the sensitivities of frequency responses. (i) Compute the frequency responses of the
system under excited forces. (ii) Calculate the pseudo-force vector R (u) by using
equation (6). (iii) After substituting R (u) into equation (20), the sensitivities are
obtained by a second-modal superposition, i.e.,

LX(u)
Lp

j

"

n
+
r/1

/T
r
R(u)

j
r
!u2

/
r
. (21)

When the middle}high}modal truncation and low}high}modal truncation are
applied, the sensitivities expressed in equation (21) can be rewritten as

A
LX (u)

Lp
j
B
l

1

"

L
+
r/1

/T
r
Rl

1
(u)

j
r
!u2

/
r
,

Rl
1
(u)"S(u)Xl

1
(u) , (22)

A
LX (u)

Lp
j
B
m

1

"

L2
+

r/L1

/T
r
Rm

1
(u)

j
r
!u2

/
r
,

Rm
1
(u)"S (u)Xm

1
(u) , (23)
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where Xl
1
(u) and Xm

1
(u) are de"ned by equations (16) and (17). Equations (22) and

(23) are the governing equations of the sensitivities of the frequency responses in the
lower and higher frequency range respectively.

The modal truncated errors of the sensitivities resulting from equations (22) and
(23) are

EM l
1
(u)"

n
+
r/1

/T
r
S(u)El

1
(u)

j
r
!u2

/
r
#

n
+

r/L`1

/T
r
Rl

1
(u)

j
r
!u2

/
r
, (24)

EM m
1

(u)"
n
+
r/1

/T
r
S (u)Em

1
(u)

j
r
!u2

/
r
#

L1~1
+
r/1

/T
r
Rm

1
(u)

j
r
!u2

/
r
#

n
+

r/L2`1

/T
r
Rm

1
(u)

j
r
!u2

/
r

(25)

respectively. Obviously, the errors of the sensitivities of frequency responses are
composed of two parts. One results from the truncated errors of frequency
responses, which is expressed by the "rst part in equations (24) and (25). The other
results from the modal truncation when the modal superposition method is used to
calculate the sensitivities, which is denoted by the residual parts in the two
equations.

3. FREQUENCY RESPONSES AND THEIR SENSITIVITIES IN LOWER
FREQUENCY RANGE

3.1. MODAL ACCELERATION METHOD FOR FREQUENCY RESPONSES

It can be proven that the inverse of matrix (K!u2I) in equation (13) can be
expanded in a power series as

(K!u2I)~1"K~1
H
+
h/0

(u2K~1)h#(u2K~1)H`1(K!u2I)~1, (26)

where H is any integer that is larger than !1. H"!1 indicates that no power
series is adopted. Substituting equation (26) into equation (14), the frequency
responses can be expressed as

X (u)"X
A
(u)#X

S
(u), (27)

where X
A
(u) and X

S
(u) denote the frequency responses de"ned by the summation

of the former H#1 items and by the residue of the power series respectively. They
are

X
A
(u)"UK~1

H
+
h/0

(u2K~1)hUTF(u), (28)

X
S
(u)"U (u2K~1)H`1(K!u2I)~1UTF(u). (29)

The frequency responses X(u) are divided into two parts, X
A
(u) and X

S
(u), only

because the two parts are associated with the modal acceleration and modal
superposition respectively.
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Firstly, the frequency responses described in equation (28) are discussed. It can be
seen from equation (28) that the frequency responses X

A
(u) are expressed with

modal parameters of the system. However, almost all the higher eigenvalues and
eigenvectors are usually not available for a large and/or complex system. Hence, it
is necessary to rewrite them with physical parameters of the system. Using
equation (12), the matrix K~1(u2MK~1)h can be expanded as

K~1(u2MK~1)h"UK~1UT (MUu2K~1UT)2(MUu2K~1UT)
hggggggiggggggj

h

. (30)

Considering the mass matrix normalization of the eigenvector matrix U,
equation (30) is simpli"ed as

K~1(u2MK~1)h"UK~1(u2K~1)hUT. (31)

Introducing equation (31) into equation (28) yields

X
A
(u)"K~1

H
+
h/0

(u2MK~1)hF(u). (32)

Obviously, the parameters on the right-hand of equation (32) are all known in
advance.

The frequency responses X
S
(u) de"ned by the residue of the power series can be

rewritten as

X
S
(u)"UG(u)UTF(u), (33)

where G(u) is a diagonal matrix and the rth diagonal element is

g
r
"A

u2

j
r
B
H`1 1

j
r
!u2

(r"1, 2,2, n). (34)

Equation (33) can be expanded in modal space as

X
S
(u)"

n
+
r/1
A
u2

j
r
B
H`1 /T

r
F(u)

j
r
!u2

/
r
. (35)

Substituting equations (32) and (35) into the right-hand side of equation (27), the
frequency responses are obtained as

X(u)"K~1
H
+
h/0

(u2MK~1)hF (u)#
n
+
r/1
A
u2

j
r
B
H`1 /T

r
F(u)

j
r
!u2

/
r
. (36)
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Assuming the lower ¸ modes are selected as the kept modes when modal truncation
is adopted, the frequency responses can be expressed as

Xl
2
(u)"K~1

H
+
h/0

(u2MK~1)hF (u)#
L
+
r/1
A
u2

j
r
B
H`1 /T

r
F(u)

j
r
!u2

/
r
. (37)

The modal truncated errors resulting from equation (37) are

El
2
(u)"

n
+

r/L`1
A
u2

j
r
B
H`1 /T

r
F (u)

j
r
!u2

/
r
. (38)

3.2. DOUBLE-MODAL ACCELERATION METHOD FOR THE SENSITIVITIES

After the frequency responses are obtained, they can be used to calculate their
sensitivities. Substituting equation (26) into equation (20), one has

LX(u)
Lp

j

"A
LX (u)

Lp
j
B
A

#A
LX(u)

Lp
j
B
S

, (39)

A
LX(u)

Lp
j
B
A

"UK~1
H
+
h/0

(u2K~1)hUTR(u), (40)

A
LX(u)

Lp
j
B
S

"U(u2K~1)H`1(K!u2I)~1UTR(u). (41)

Based on the same derivative procedure of equation (36), we have

LX(u)
Lp

j

"K~1
H
+
h/0

(u2MK~1)hR(u)#
n
+
r/1
A
u2

j
r
B
H`1 /T

r
R (u)

j
r
!u2

/
r
. (42)

When the lower ¸ modes are selected as the kept modes, the sensitivities of
frequency responses are obtained by the double-modal acceleration as

A
LX (u)

Lp
j
B
l

2

"K~1
H
+
h/0

(u2MK~1)hRl
2
(u)#

L
+
r/1
A
u2

j
r
B
H`1 /T

r
Rl

2
(u)

j
r
!u2

/
r
,

Rl
2
(u)"S (u)Xl

2
(u), (43)

where S (u) is de"ned in equation (6).
Similarly, three steps are required to calculate the sensitivities of frequency

responses by using the double-modal acceleration method. (i) The frequency
responses of the system under excited forces are computed by using the modal
acceleration method in equation (37). (ii) Pseudo-force vector Rl

2
(u) is calculated by

using the second equation of equation (43). (iii) Rl
2
(u) is substituted into the "rst
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equation of equation (43), and then the sensitivities are obtained by a second-
modal acceleration.

The truncated errors resulting from equation (43) are

EM l
2
(u)"K~1

H
+
h/0

(u2MK~1)hS (u)El
2
(u)

#

n
+
r/1
A
u2

j
r
B
H`1 /T

r
S(u)El

2
(u)

j
r
!u2

/
r
#

n
+

r/L`1
A
u2

j
r
B
H`1 /T

r
Rl

2
(u)

j
r
!u2

/
r
. (44)

The errors of the sensitivities are composed of two parts. The structure is similar to
that of equation (24). One results from the truncated errors of the frequency
responses calculated with equation (37) and is expressed by the former two parts in
equation (44). The other results from the modal truncation when calculating the
sensitivities themselves and is denoted by the third part in equation (44).

3.3 CONVERGENT CONDITION

Equation (38) has a coe$cient (u2/j
r
)H`1 compared with equation (18). In order

that the truncated errors of the frequency responses obtained from equation (37)
are reduced with the increase of the items H of the power series, the equation

K
u2

j
r
K(1 (r'¸) (45)

should be satis"ed for the truncated modes. Considering equation (8), one has

u2
max

(j
L`1

, (46)

where u
max

is the highest frequency among the excited frequencies. Usually, one or
two more modes are selected to make the covergence faster. Obviously, when
conditions (45) or (46) is satis"ed, the modal acceleration method can make the
approximate frequency responses Xl

2
(u) very close to the real X(u), which leads to

DEl
2
(u) D;DXl

2
(u) D . Similarly, when condition (46) is satis"ed, the errors of the

sensitivities of frequency responses are convergent too. Hence, equation (46) is the
convergent condition of the frequency responses and their sensitivities.

4. FREQUENCY RESPONSES AND THEIR SENSITIVITIES IN MIDDLE
FREQUENCY RANGE

4.1. MODAL ACCELERATION FOR FREQUENCY RESPONSES

Considering the eigenvalue shifting technique, we have

(K!u2M)"(KM !uN 2M), (47)
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where

KM "K!qM, uN 2"u2!q. (48)

Usually, the eigenvalue shifting q is

q+
u2

min
#u2

max
2

(49)

and should satisfy qOj
r
(r"1, 2,2, n) . u

min
and u

max
are the under and upper

boundary values of the excited frequencies. Substituting equation (47) into
equation (4), the frequency responses are obtained as

X(u)"(KM !uN 2M)~1F(u). (50)

Equation (50) can be rewritten as

X(u)"U (KM !uN 2I)~1UTF(u) (51)

by using the modal parameters of the system, where

KM "K!qI. (52)

When modal acceleration is applied, the frequency responses can be expressed as

X(u)"KM ~1
H
+
h/0

(uN 2MKM ~1)hF(u)#
n
+
r/1
A
u2!q
j
r
!q B

H`1 /T
r
F(u)

j
r
!u2

/
r
. (53)

Assume that the ¸
1
th through the ¸

2
th modes are selected as the kept modes when

modal truncation is applied. The frequency responses in the middle frequency range
of the system are

Xm
2
(u)"KM ~1

H
+
h/0

(uN 2MKM ~1)hF(u)#
L2
+

r/L1
A
u2!q
j
r
!q B

H`1 /T
r
F(u)

j
r
!u2

/
r
. (54)

The errors resulting from equation (54) are

Em
2
(u)"

L1~1
+
r/1

A
u2!q
j
r
!q B

/T
r
F(u)

j
r
!u2

/
r
#

n
+

r/L2`1
A
u2!q
j
r
!q B

H`1 /T
r
F(u)

j
r
!u2

/
r
. (55)
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4.2. DOUBLE-MODAL ACCELERATION METHOD FOR THE SENSITIVITIES

Substituting equation (47) into equation (7) yields

LX(u)
Lp

j

"(KM !uN 2M)~1R(u). (56)

Based on the similar derivation above, one has

LX (u)
Lp

j

"KM ~1
H
+
h/0

(uN 2MKM ~1)hR (u)#
n
+
r/1
A
u2!q
j
r
!q B

H`1 /T
r
R(u)

j
r
!u2

/
r
. (57)

When modal truncation is applied, the sensitivities are

A
LX(u)

Lp
j
B
m

2

"KM ~1
H
+
h/0

(uN 2MKM ~1)hRm
2
(u)#

L2
+

r/L1
A
u2!q
j
r
!q B

H`1 /T
r
Rm

2
(u)

j
r
!u2

/
r
,

Rm
2
(u)"S (u)Xm

2
(u). (58)

The errors resulting from equation (58) are

EM m
2
(u)"KM ~1

H
+
h/0

(u2MKM ~1)hS(u)Em
2
(u)#

n
+
r/1
A
u2!q
j
r
!q B

H`1 /T
r
S (u)Em

2
(u)

j
r
!u2

/
r

#

L1~1
+
r/1

A
u2!q
j
r
!q B

H`1 /T
r
Rm

2
(u)

j
r
!u2

/
r
#

n
+

r/L2`1
A
u2!q
j
r
!q B

H`1 /T
r
Rm

2
(u)

j
r
!u2

.

(59)

4.3. CONVERGENT CONDITION

In order that the frequency responses obtained from the modal acceleration
method are more accurate than those from the typical modal superposition method
and that the truncated errors will decrease with the increase of the items H of the
power series, the selected ¸

1
and ¸

2
should satisfy

K
u2!q
j
r
!q K(1 (r)¸

1
!1, r*¸

2
#1). (60)

By considering equation (49), one obtains

j
L1~1

(u2
min

, j
L2`1

'u2
max

. (61)

Equation (61) is the governing equation of ¸
1

and ¸
2
. It means that the

frequencies corresponding to the truncated modes should lie outside of the excited
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frequency range. Usually, one or two more modes are selected to make the
covergence faster. When equation (61) is satis"ed, the truncated errors of the
sensitivities will decrease with the increase of H.

5. NUMERICAL EXAMPLE

A two-dimensional frame shown in Figure 1 is considered here. The height and
width of each story are 2)0 and 4)0 m respectively. It has a total of 32 nodes and 96
degrees of freedom. For all the beams, modulus of elasticity"2)1E11 N/m2, mass
density"7830 kg/m3, area moment of inertia"8)0E-9 m4, cross-sectional
area"2)4E-4 m2. The former 20 natural frequencies are listed in Table 1.

5.1. FREQUENCY RESPONSES

Assume that an identity force is located at node 28 in the y direction.
The frequency range of the force is 0}60 rad/s. It lies in the lower frequency range of
Figure 1. The schematic of a two-dimensional frame.

TABLE 1

¹he former 20 natural frequencies of the frame (rad/s)

Order Frequency Order Frequency Order Frequency Order Frequency

1 6)37976 6 81)1249 11 180)054 16 366)699
2 14)7552 7 97)1531 12 199)266 17 417)440
3 28)4262 8 110)864 13 214)255 18 439)016
4 30)6140 9 140)522 14 309)187 19 476)141
5 35)9307 10 151)388 15 341)922 20 520)263



Figure 2. Errors of frequency responses in lower frequency range at (a) node (28); (b) node (13).
**, H"!1; } } }, H"0; . . . . , H"2; } ) } ) } , H"4.
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the structure. According to the frequency characteristics of the excited force and
equation (46), q"0 and ¸"5 are selected. This means that all the modes which
are higher than the 5th are truncated when modal truncation is adopted. The
frequency responses at node 28 and 13 in the y direction for various H are
calculated. The Errors of the approximate frequency responses are shown in
Figures 2(a) and 2(b). The Error is de"ned as

Error"D (x
appro

!x
exact

)/x
exact

D , (62)

where x
appro

and x
exact

denote the approximate and exact frequency response
respectively. In the two "gures, H"!1 denotes the Errors of the frequency
responses obtained from equation (16).

The accuracy of frequency responses obtained from equation (16) is very low.
The largest percent errors ("100Errors%) in Figures 2(a) and 2(b), for example,
are 16)02% and 53)22% respectively. After the modal acceleration method is
applied, the accuracy increases quickly. For the cases of H"0, 2 and 4 in
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Figures 2(a) and 2(b), the percent errors, which correspond to the largest errors for
H"!1, are 0)0748, 0)0000, 0)0000% and 1)976, 0)0020, 0)0007% respectively. The
accuracy of the frequency responses for lower frequencies increases much more
quickly than that for higher frequencies. The Error at 10)0 rad/s for H"!1 is
about 107 times as large as that for H"4. However, it is about 100 times at
60)0 rad/s. The reason can be explained from equation (38).

Assume the frequency range of the excited force is 120}190 rad/s. It lies in the
middle frequency range of the structure. According to the frequency characteristics
of the excited force and equation (61), q"27 200, ¸

1
"8 and ¸

2
"13 are selected.

This means that the former seven modes and all the modes which are higher than
the 13th are truncated when modal truncation is adopted. The frequency responses
at nodes 28 and 13 in the y direction for various H are calculated. The Errors of
these approximate frequency responses are shown in Figures 3(a) and 3(b). In the
two "gures, H"!1 denotes the Errors of the approximate frequency responses
obtained from equation (17).
Figure 3. Errors of frequency responses in middle frequency range at (a) node 28; (b) node 13.**,
H"!1; } } }, H"0; . . . . . , H"2; } . } . } ., H"4.
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The accuracy of frequency responses obtained from equation (17) is very
low. The largest percent errors in Figures 3(a) and 3(b), for example, are 9880
and 7463% respectively. Obviously, these frequency responses are useless. After
the modal acceleration method is applied, the accuracy increases very quickly.
The percent errors, which correspond to the largest errors for H"!1, for H"0,
2 and 4 in Figures 3(a) and 3(b), are 286)6, 0)1579, 0)0000% and 174)4, 0)0362,
0)0000% respectively. The accuracy of the frequency responses for middle
frequencies increases much more quickly than that for lower and higher
frequencies.

5.2. SENSITIVITIES OF FREQUENCY RESPONSES

Assume that the modulus of elasticity of element &&a'' in Figure 1 is selected as the
design parameter. The sensitivities of the frequency responses discussed above
are calculated. Their Errors are shown in Figures 4 and 5 respectively. The
accuracy of the sensitivities obtained from the double-modal superposition method,
Figure 4. Errors of sensitivities in lower frequency range at (a) node 28; (b) node 13.**, H"!1;
} } }, H"0; . . . . . , H"2; } . } . } ., H"4.



Figure 5. Errors of sensitivities in middle frequency range at (a) node 28; (b) node 13. **,
H"!1; } } }, H"0; . . . . . , H"2; } } } , H"4.
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i.e., equations (22) and (23), is very low. It increases quickly if the double-modal
acceleration method is applied. When the former "ve items of the power series, that
is H"4, are adopted, the Errors are reduced by at least 1000 times.

For the proposed modal acceleration methods, 701 times steps, i.e.,
Dt"0)1 rad/s, are applied to calculate the frequency responses and their
sensitivities in the middle frequency range. The computed time is 4)2 s in a PC-100.
If the direct method is used for this problem, 701 times of decomposition, forward
and back-substitutions of dynamic sti!ness matrix K!u2M are required. The
corresponding computed time is 46)3 s. Obviously, the latter is much more
computationally expensive than the former. If the number of time steps and degrees
of freedom becomes larger, the computational time of the latter will increase
rapidly. If the accuracy, which is equivalent to the present method for H"4, is
required for the modal superposition method, the former 25 frequencies and their
corresponding mode shapes should be selected as the kept modes. This makes the
computation of the eigen-problem much more expensive because the solution time
rises drastically as the number of eigenpairs increases [9].
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The Errors of frequency responses and their sensitivities for H"!1 in Figures
2}5 are redrawn in Figure 6. In these "gures, FR and SFR denote frequency
responses and their sensitivities respectively. If the same modes are adopted for
calculating frequency responses and their sensitivities in the lower frequency range,
the Errors of the former are generally much smaller than the latter. However, it is
not true for them in the middle frequency range. This has mainly resulted from
partial o!set of the truncated errors of the sensitivities in two modal truncations.

6. CONCLUSIONS

Based on the hybrid expansion of the dynamic #exible matrix, a modal
acceleration method and a double-modal acceleration method for frequency
responses and their sensitivities of undamped systems are derived respectively.
When the frequencies of excited forces lie in the lower frequency range of the
system, both the middle and the higher modes can be truncated by using the
Figure 6. Comparison of the errors of frequency responses and their sensitivities: (a) errors in lower
frequency range at node 28; (b) errors in lower frequency range at node 13; (c) errors in middle
frequency range at node 28; (d) errors in middle frequency range at node 13.**, FR; - - - - - -, SFR.



Figure 6. (Continued)
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methods. When the excited frequencies lie in the middle frequency range, the higher
as well as the lower modes can be truncated. The following "ve conclusions can be
drawn from these methods.

(1) Theoretically, the natural frequencies corresponding to the truncated modes
should lie outside of the frequency range of the excited forces when using the
proposed methods. However, one or two more modes are selected as the kept
modes to improve the convergent rate of the acceleration methods.

(2) The accuracy of frequency responses and their sensitivities obtained from
modal superposition and double-modal superposition methods are very low.
When the two-modal acceleration methods are adopted, the modal truncated
errors are reduced very quickly, especially for the sensitivities. Generally,
highly accurate results can be obtained when several items of the power series
are adopted.

(3) When a system has rigid modes, qO0 in equation (48) can make the sti!ness
matrix non-singular.
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(4) The proposed methods are also valid for frequency response functions and
their sensitivities, responses in time domain and their sensitivities.

(5) If the same modes are adopted for calculating frequency responses and their
sensitivities in the lower frequency range, the Errors of the former are
generally much smaller than the latter. However, it is not true for them in the
middle frequency range. This has mainly resulted from partial o!set of the
truncated errors in two-modal truncations.
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